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Modulatory heat-transfer enhancement in grooved channels is investigated by direct 
numerical simulation of the NavierStokes and energy equations using the spectral 
element method. It is shown that oscillatory perturbation of the flow at the frequency 
of the least-stable mode of the linearized system results in subcritical resonant 
excitation and associated transport enhancement as the critical Reynolds number of 
the flow is approached. The TollmienSchlichting frequency theory that was presented 
in Part 1 of this paper is shown to accurately predict the optimal frequency for 
transport augmentation for small values of the modulatory amplitude, and the 
effect of the excited travelling-wave channel modes on the resulting temperature 
distribution is described. The importance of (non-trivial) geometry in the forced 
response of a flow is discussed, and grooved-channel flow is compared to (straight- 
channel) plane Poiseuille flow, for which no resonance excitation occurs owing to a 
zero projection of the forcing inhomogeneity on the dangerous modes of the system. 
For the particular grooved-channel geometry investigated, resonant oscillatory 
forcing at modulatory amplitudes as small as 20% of the mean flow results in a 
doubling of transport as measured by a time, space-averaged Nusselt number. 

1. Introduction 
Heat transfer in grooved, furrowed, or hned-wall channels and ducts (Kern & 

Kraus 1972) plays a critical role in many important processes and devices, from 
industrial heat exchangers (Kays & London 1955) to the cooling of microscale 
electronic components (Arvizu & Moffat 1982 ; Ashiwake et al. 1983). In  many of these 
applications, it is heat transfer mechanisms that limit the size, performance, and 
efficiency of the overall engineering systems, and it is therefore of great practical 
interest to determine ways in which to enhance grooved-channel heat transfer by 
appropriate modification of the environment (geometry, flow conditions) in which 
these controlling transport processes take place. 

It has been found that oscillation of the driving flow is a promising approach 
to heat-transfer enhancement in grooved-wall systems, as was &st isolated in a 
membrane blood oxygenator (Bellhouse et al. 1973), and subsequently confirmed by 
numerical (Sobey 1980,1982,1983; Ghaddar, Patera & Mikic 1984) and experimental 
(Stephanoff, Sobey & Bellhouse 1980) flow studies in a periodically furrowed channel. 
These investigations, for purely oscillatory flow at relatively low Reynolds number, 
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indicate that the interaction of separated flow with imposed unsteadiness leads to 
significant lateral convective motions, from which transport enhancement can then 
be inferred. However, no simple physical effect is implicated as being responsible for 
this strong effect of flow oscillation on separation, no doubt due to the order-unity 
interaction between these two phenomena for the zero-mean-flow case. 

Of interest in the present study is the investigation of modulatory heat-transfer 
enhancement in grooved channels at ‘moderate’ Reynolds numbers (0 < R < lOOO), 
in which the amplitude of the oscillatory perturbation 7 is typically no more than 
a small fraction of the mean flow. The motivation for this work derives from the 
findings of Part 1 of this paper (Ghaddar et al., 1986, hereinafter referred to as I), in 
which it is shown that the least-stable linear mode of grooved-channel flow is oscil- 
latory in nature, with a critical Reynolds number R, on the order of 1OOO. These 
results concerning the unforced response of grooved-channel flow suggest that sub- 
sequent appropriately tuned oscillatory modulation should result in strong resonant 
response as R * Rc-, with a corresponding dramatic increase in the associated 
heat transfer. 

This phenomenon of subcritical resonance and transport enhancement is the 
subject of the current paper, in which we investigate heat transfer in incompressible 
oscillatory flow in two-dimensional periodically grooved channels by direct numerical 
simulation of the Navier-Stokes and energy equations. The general subject area of 
the effect of oscillation on stability and flow behaviour is, of course, not new, and 
there has been much work in the past on destabilization by oscillation in homogeneous 
domains (see Davis 1976 for a review). Of interest here is examining the extent 
to which complex, non-homogeneous geometry affects the stability and response 
characteristics of oscillatory forced flows, and investigating the degree to which such 
flow behaviour can be exploited for purposes of transport augmentation. 

In 52 we present the full problem formulation, and discuss the thermal boundary 
conditions imposed. In  $3 we pose the forced linearized problem, and present formal 
solutions to the linear equations. The critical role played by geometry in oscillatory 
flows is demonstrated, and comparisons made between the cases of grooved and 
ungrooved channels. In 54 heat-transfer solutions are presented for the case of steady 
flow, thus providing a baseline from which to evaluate the effect of oscillatory forcing 
on transport. In $5 we present numerical solutions to the forced linearized equations, 
verifying the predictions of 5 3. The significant effect of resonance on heat-transfer 
enhancement is demonstrated. Lastly, in $6 we present the results of our full 
nonlinear calculations, and discuss the effects of nonlinearity on transport and the 
frequency selection process. The structure of the velocity and temperature fields is 
analysed, and a brief parametric study of the effect of Prandtl number and geometry 
is given. 

2. Problem formulation 
The geometry to be considered is the periodically grooved channel shown in figure 1 

(identical to that in I), assumed infinite in extent in the streamwise (2) and spanwise 
( 2 )  directions. The flow is assumed to be fully developed in 5, and to be independent 
of spanwise coordinate z. The thermal boundary conditions are taken to be those of 
uniform flux on the bottom (grooved) wall aD,, with an adiabatic top surface aD,. 
Natural convection, variation of thermal properties, and non-fully developed effects 
are all assumed to be negligible. 
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FIGURE 1. The geometry of the periodically grooved channel is described by the groove depth a, 
the groove length 1,  and the separation distance between the grooves L, all non-dimensionalized 
with respect to the channel half-width h. The geometry is assumed infinite in the streamwise (5) 
and spanwise (2) directions. 

To put the problem in non-dimensional form, we scale all velocities by XV, where 
V is the time-mean cross-channel average velocity, 

h 

v = W-' I_, ( U b  = 0, Y, t ) )  dy, 

with brackets referring to temporal average. Length is non-dimensionalized by the 
channel half-width h and temperature by q"h/k, where 4" is the uniform flux imposed 
at the bottom wall, and k is the thermal conductivity of the fluid. (Hereinafter all 
variables are assumed to be non-dimensional unless otherwise indicated.) This gives 
the following equations for the velocity u(x, t )  ( = u$+ @), and the temperature 
T(x ,  t )  : 

ut = uxo-Vli'+R-'V%, in D (1 4 
V * u = O ,  inD,  (1 b)  

and T,+V.(uT)  = (RPr)-lVZT in D, (2) 

respectively, where the domain D is defined by the periodicity length between grooves 
L, the length of the grooves 1, and the depth of the grooves a. Here li' is the dynamic 
pressure, o is the vorticity, o = V x u, R = !Vh/v is the Reynolds number, and Pr 
is the Prandtl number, Pr = v / a ,  where v and a are the kinematic viscosity and 
thermal diffusivity respectively. Most results presented in this paper are for the 'base' 
geometry given in I, corresponding to L = 6.6666, 1 = 2.2222, a = 1.1111. 

The fully developed boundary conditions for the velocity u(x, t )  are as in I: 

u(x , t )  = 0, on aD ( 3 4  

( 3 b )  U(Z + mL, Y, t )  = u(2 ,  Y, 0 ,  

with L the periodicity length between grooves, and m the integer periodicity index. 
For the pressure we require 

( 4 4  n ( x ,  t )  = -f(t) 2+ ncx, t ) ,  

&+mL,y,t) = nc,,,,t,, ( 4 b )  
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where the term f ( t )  is the driving force for the flow, and is determined (indirectly) 
by the imposed flow-rate condition 

r a D m  
Q = J *u(x,y, t )dy = $( l+ r ]  sin2xS2,t) 

aDB 
(5) 

(independent of 2). Here r] is the amplitude of the modulatory component of the flow 
(the results in I correspond to r] = 0 ) ,  and Q, is the Strouhal number of the forced 
oscillation. 

For the temperature boundary conditions on the top and bottom walls we have 

VT-A = 1 on aD,, ( 6 4  

VToi i=O onaD, (6b)  

respectively, where R refers to the outward normal on the domain boundary. As 
regards the condition that the flow is fully developed, we cannot simply impose 
periodicity of T ( x ,  t ) ,  as this is inconsistent with the boundary conditions (3) and (6) 
if steady or steady-periodic solutions are sought. Rather, we must first subtract a 
linear term to compensate for the rise in mixed-mean temperature along the channel 
due to the net flux input (6), giving as the appropriate periodicity condition 

o ( x + m ~ ,  y, t )  = e(x, y, t ) .  ( 7 b )  

These boundary conditions can be shown to result in a consistent (solvable) set of 
equations for determination of the temperature in the cases of steady or steady- 
periodic flow, as is readily demonstrated by integration of (2) over the flow domain, 
use of conditions (3), (5) and (6), and averaging in time. The details of this simple 
demonstration, as well as a discussion of the physical relevance of the fully developed 
boundary conditions, (7), are given in Ghaddar, Karniadakis & Patera (1986). We 
have used the flux boundary conditions, (6), rather than the simpler case of 
isothermal walls, as the former are often a better model for practical applications 
and experimental configurations. Our results are not qualitatively sensitive to the 
particular thermal boundary conditions chosen. 

3. Linear theory - formal solution 
In  addition to the fully nonlinear problem (1)-(7), we shall also consider the linear 

problem in which we perturb the flow in an oscillatory fashion about a known (stable) 
steady state. This will allow us to interpret our results in the context of the previous 
work on unforced flow (see I), as well as subsequently determine the effect of 
nonlinearity on the resonance phenomenon. To arrive a t  the forced linear problem, 
we do a perturbation expansion for the velocity in the forcing parameter r ] ,  

v(x ,  t )  = V & ) + r ] V ’ ( X , t )  (17 4 I ) ,  (8) 

where us is the (numerically obtained) steady solution to the grooved-channel 
problem (see I). Inserting (8) into (1) and neglecting terms O(q2) and higher then gives 
the following linear equation for v’ (x ,  t )  : 

V ;  = V, x W’ + V‘ x O, - V m  +f$ + R-lV2v’, (9a )  

V’V’ = 0.  (9b) 
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The boundary conditions on u', IT are as for the nonlinear problem, (3)-(4), however 
the flow-rate condition (5) is now replaced with 

&'(t) = J * ~ ' ( 2 ,  y, t )  dy = sin 2nSZFt. 

Once we have determined the velocity from (8)-( lo), we solve the full passive scalar 
equation (2), + V * [ (us + yu')  T] = ( R  Pr)-lV2T, 

for the temperature, with boundary conditions (6)-(7) as before. As the motivation 
behind (8) is linearization, and not perturbation per se, we have kept terms to all 
orders of 7 in (1 1). This will be discussed further in $5. 

In  $5, we shall solve (9)-(11) by direct numerical simulation and discuss the 
frequency, Reynolds-number and amplitude (7) dependence of the linear response. 
To motivate these results, and also highlight the critical role of geometry in 
resonance, we present here a formal analytical solution to the linear problem. To 
begin, we redefine (9) in terms of a stream-function representation, defining the 
velocity as 

u'(x, t )  = v x $(., y, t )  2, 

9$ = wt, and writing (9) as 

with boundary conditions 
V$*R=O onaD, 

$ = 0  onaDB, (14b) 

$ = &'(t) on aD,. (144 

9$ = -V4$+J(V211rs, $ ) -J ($sV2$) ,  (154 

M$ = -V2$, (15b) 

Here the operators 9 and M are defined as 

where $s is the steady-state stream function, us = V x $, 2, and J(u,  v) is the Jacobian 
operator defined as J(u, v) = u, vy - uy v,. 

Although the two formulations (9) and (13) are, by construction, equivalent, we 
see that the flow-rate condition enters directly into (13) as a boundary condition, 
(14c), whereas in (9) it is a constraint imposed by the pressure gradient term, f ' ( t ) .  
This pressure gradient term, f ' ( t ) ,  which can be thought of as part of the response 
of the system, does not appear in the stream-function equations explicitly (as it is 
irrotational), however it can be recovered by integration of the 2-component of (9a) 
along the top boundary aD,, 

This term will be instrumental later in determining whether or not resonance obtains. 
Continuing with our formal solution of (13) and (14), we adopt the usual procedure 

of expanding @ in terms of the eigenfunctions $k(., y) of the homogeneous problem 
associated with (13)-( 14), 

9$k = S k M $ k  in D, (17) 
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Y*$z = SkM*$g in D, 

V$-,**ii = 0 on aD, (20a) 

$ ; = O  onaD. (20b)  

(21 a) 

M* = M, (21 b)  

The adjoint operators Y*,  M*, are given by 

$*- J(V2$s,  $*) +V2J($, ,  $*I, Y*$* = -v4 

for which, by construction, (u, Y v )  = ( Y * u ,  v ) ,  (u, Mv) = (M*u, v ) ,  for u, v satisfying 
the homogeneous boundary conditions (18). Here (u ,  v )  is the usual scalar product 

P P  

(u , v )  = JJ Evdx, 
D 

where overbar denotes complex-conjugate. 

all of the boundary conditions (18), the expansion 
We now assume completeness in the sense that, for a function g(x) which satisfies 

converges sufficiently fast so as to allow termwise evaluation of Yg. The coefficients 
(23b) follow from the usual orthogonality conditions 

Although we have no proof of the above claims for arbitrary geometry, these results 
have been shown to be true for the case of a plane channel (Diprima & Habetler 1969), 
and seem plausible for the case considered here. 

If we now consider the forced problem (13)-(14), it is clear that  $ will not satisfy 
the homogeneous boundary conditions (18), and thus the validity of the expansion 
(23) is no longer a reasonable assumption. To avoid this problem, we write 

where i t  is seen that 4 now does satisfy the conditions (18), and is therefore 
expandable according to  (23). (Note the choice of 4 is clearly not unique, as any 
function incorporating the inhomogeneous boundary conditions (14 c) will suffice.) 
Inserting (25) and (10) into (13)-(14), we obtain the following equation for 4:  

(26 ) Y$-M+t = -(Y-iiWFM)$, exp(iw,t), 

with associated homogeneous boundary conditions, (18). Here wF = 27cQF, and, 
consistent with (lo), we take the imaginary part of 4 to be our physical solution. 

Of interest here is understanding under what conditions (26) admits resonant 
solutions, that is solutions which exhibit secular (non-periodic) behaviour in time. 
Such solutions will clearly characterize the response of the flow to oscillatory forcing, 
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even at  subcritical Reynolds numbers. We begin by assuming time-asymptotic 
solutions of the form 

#(z, y, t ,  = $’(x, y) exp (iwF t ) ,  (27) 

corresponding to periodic behaviour in time ; if solutions of the form (27) can be found, 
resonance will not occur, whereas if (27) leads to a non-solvable system, resonance 
will obtain. Inserting (27) in (26) gives the (purely spatial) problem for #’, 

(de-iwFM)$’ = -(9’-i1+M)$~. (28) 

We then expand #‘ as in (23a), 
OD 

#’(z,Y) = z % @ k ( X ) ,  
k-1 

(29) 

insert (29) into (28), and use orthogonality, (24), to arrive at  the following equation 
for the modal amplitudes ak:  

Integration by parts can be used to further simplify the right-hand side of (304 ,  giving 

where f ;* is the modal adjoint pressure gradient term 

L 

- ”  

analogous to (16). 
Looking at (30b), we can now clearly state the conditions for resonance. First, the 

flow must become unstable at some critical Reynolds number R, defined by the 
zero-crossing of Q,. Secondly, the unstable mode must be oscillatory in nature, that 
is a, must be non-zero. Resonance will then occur as 0, =r a,, R * R,, as long as the 
right-hand side of (30b) remains non-zero in  this limit. If the first two conditions are 
satisfied, the last constraint can be seen to be equivalent to the requirement 

f ;* 9 0, (32) 

that is that the forcing term have a non-zero projection on the critical mode. We can 
also state the resonance conditions in terms of (28), in which it is seen that resonance 
will occur when the left-hand-side operator becomes singular, and the equation 
non-solvable (that is when the right-hand side is not orthogonal top:). Equation (30b) 
also suggests the possibility of secondary peaks (i.e. local maxima in the frequency 
response) corresponding to excitation of higher modes (ak, k 3 2) of the linear system. 

In the case of resonance, R = R,, 52, = a,, f ;* =k 0, the expansion (27) and all that 
follows is no longer appropriate, and we must use instead 

$ = exp (iOF t ,  cta; y) + 4 / 1 7  (33) 

with 4’ expanded as before in (29). Inserting (33) into (26) then gives the following 
equation for 4’ : 

(344  

Although (34a) is still singular, the proper choice of a;, 

(9’ - io, M)$‘ = a; M$l - (9 - iwF M) $,. 
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results in a solvable equation, as can be easily seen by inspection of (34a) and (30b). 
The fact that the solution (33) is unbounded as t 00 is, of course, non-physical, an 
indication that nonlinear effects will quickly intervene. However, (33) is nevertheless 
evidence that, as R R,, the flow will respond to appropriately tuned forcing with 
large-amplitude fluctuations and associated transport enhancement. 

The formal conditions for resonance given above are, in fact, only a particular case 
of a general theory described in Magen & Patera (1986). This more general theory 
proceeds by considering dual eigenproblems : the first eigenproblem corresponds to 
imposed (zero) flow rate &’ = 0, in which the pressure dropf’ is taken as part of the 
homogeneous response of the system (this is the formulation considered in I, as well 
as in (17) and (18) of the current paper) ; the second eigenproblem corresponds to (zero) 
imposed pressure dropf’ = 0, with the resulting flow rate, &’, now interpreted as part 
of the internal system response. It can then be shown that resonance occurs only in 
flows for which the critical mode is not common to both eigenproblems. Interpreting 
our result (32) in terms of these arguments, we see that resonance occurs for our 
imposed flow-rate system only if the pressure drop of the critical mode of the 
corresponding homogeneous problem is non-zero. Physically, the inhomogeneity gLy$ 
in (30b) is the product of the oscillatory flow-rate magnitude and the resulting modal 
pressure drop; this is equivalent to the power input into the system, and is therefore 
a measure of the oscillatory susceptibility of the flow. 

It might appear that the subcritical resonance phenomenon described here is a 
rather trivial exploitation of the natural modes of a continuous system, and, in some 
sense, this is true. However, there are some subtle complications that explain why 
the phenomenon has not been widely studied or exploited. First, there is the rather 
obvious requirement that a, be non-zero; for many of the geometries and physical 
problems that are analytically tractable (e.g. BBnard convection between parallel 
plates, Taylol-Couette flow between concentric cylinders), translation invariance and 
geometric homogeneity result in exchange of stability, and therefore the linear 
resonance phenomenon no longer obtains. 

The second, more interesting, requirement for resonance is (32), namely that the 
adjoint forcing term be non-zero in order that (28) be non-solvable. We illustrate the 
significant effect of geometry on satisfaction of this constraint by first considering 
the case of plane Poiseuille flow (a = 0 in figure l),  for which (17) and (18) reduce 
to the classical Orr-Sommerfeld equation (see I, also Drazin & Reid 1981), with the 
qFk now corresponding to Tollmien-Schlichting waves characterized by wavenumbers 
a, = 2nm/L. It is clear that for a, 9 0, &* = 0, as in this case, the integration in 
(31) corresponds to the average of a non-zero Fourier mode. The only possible 
resonance modes must therefore correspond to a, = 0; however, as these (Stokes) 
modes are purely decaying, we conclude that linear subcritical resonance can not 
occur for plane Poiseuille flow. The only dangerous (Orr-Sommerfeld) modes of the 
system are solutions to both the imposed flow-rate and imposed pressure-drop 
eigenproblems, and the flow is therefore not susceptible to oscillatory perturbation. 

In  fact, within the context of our linearized (in 7) theory, oscillation of plane 
Poiseuille flow results only in Womersley flow (Davis 1976), with no excitation of the 
‘non-trivial ’, unstable (Tollmien-Schlichting) modes of the system. Furthermore, 
there is no vertical velocity generated, and, hence, no transport enhancement. (For 
other thermal boundary conditions appropriate for the study of longitudinal transport, 
there may indeed be enhancement even in Womersley flow (Watson 1983; Joshi et al. 
1983), however, our concern here is witjh lateral, resonant enhancement.) It should 
be noted that subcritical resonance is very different from oscillatory ‘ destabilization ’ 
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FIQURE 2. A plot of the adjoint forcing termf’* for R = 525 and the base geometry, obtained by 
direct numerical simulation of the spectral element discretization of the unforced linear adjoint 
equation. The frequency of oscillation Q,, and the growth rate u,, of the time-asymptotic solution 
are the same as those found in I by consideration of the velocity field. The non-zero amplitude of 
the adjoint pressure term implies that resonance will OCCUT in grooved channels. 

such as parametric instability (Davis 1976; Drazin & Reid 1981), which, in the 
context of our small-7 expansion, is a ‘nonlinear’ effect. The study of the stability 
of Womersley flow corresponds, in fact, to an investigation of the stability of 
the time-dependent flows resulting from solution of (9). 

It is simple to (numerically) demonstrate that for grooved-channel flow this 
degeneracy as regards geometry disappears, and that the least-stable mode achieves 
a non-zero ‘projection’ on the adjoint forcing term fi*. We plot in figure 2 f’*(t) 
obtained from direct numerical simulation of the spectral element discretization of 
the (time-dependent, primitive-variable) unforced linear adjoint equation, (19)-(21), 
at R = 525, for the base geometry L = 6.6666, 1 = 2.2222, a = 1.1111. (A detailed 
discussion of our direct simulation techniques for linear-theory calculations is given 
in I and the references therein.) The frequency and time-asymptotic decay rate from 
figure 2 are the same as those obtained in I by consideration of the velocity field, 
from which we conclude that the first (least-stable) mode of the grooved-channel flow 
corresponds to a non-zero adjoint pressure gradient term. It is shown in I that this 
oscillatory mode becomes unstable at  R, = 975, and thus grooved-channel flow 
satisfies all the requirements for resonance detailed above. The fact that resonance 
obtains implies that for the grooved channel (unlike the planar channel), the imposed 
flow-rate and imposed pressure-drop eigenproblems are not the same (Magen & Patera 
1986); although in this series of papers we have considered only the flow-rate 
formulation, a complete analysis must include both. 

Another way in which to see the singular difference between grooved and 
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ungrooved channels is to consider the nature of the instability modes. For plane 
Poiseuille flow, the TollmienSchlichting modes are travelling waves, and thus a 
Gallilean change of reference frame reduces the least-stable mode to a purely decaying 
one, for which we do not expect linear resonance. On the other hand, although the 
grooved-channel modes closely resemble travelling Tollmien-Schlichting waves in the 
channel region of the flow, the non-homogeneous geometry does not permit ‘global’ 
solutions of the form of travelling waves in the entire domain. Thus, just as the groove 
region perturbs the channel waves so as to destabilize them in the unforced problem, 
so it provides the mechanism by which the Tollmien-Schlichting-like waves can be 
excited to resonance by an external force. Although resonance will not occur for a 
straight channel, we conjecture that resonance will occur in the presence of an 
arbitrarily small (but finite) groove, with R, 3 5772 (the plane-Poiseuille-flow result) 
as the groove size goes to zero. 

In summary, these linear-theory results indicate that a simple resonance will occur 
in grooved-channel flows forced at their (primary) natural frequency a, as the critical 
Reynolds number R, is approached. The stability theory for grooved-channel flows 
based on Tollmien-Schlichting shear layer interaction described in I can be used to 
predict the frequency of the least-stable linear modes, although the response will be 
markedly different from that obtained in a straight channel. In the remaining sections 
we validate and quantify these linear-theory predictions, indicate how they are 
modified (but persist) when fully nonlinear effects are considered, and describe their 
significant effect on the transport characteristics of a flow. 

4. Steady flow-heat transfer 
In this section we consider the steady-state heat transfer characteristics of 

unmodulated (7 = 0) grooved-channel flow, to provide a baseline calculation from 
which to evaluate the effects of oscillation on transport. The results presented are 
obtained by time-integration of the spectral element equivalent of equations (1)-(7) 
to a steady state, using meshes such as those shown in figure 7 of I. The details of 
our numerical methods for solution of the Navier-Stokes equations have been 
described and appropriately referenced in Part 1 of this paper, and will not be 
repeated here. The solution algorithm for the passive scalar equation (2) is very 
similar in nature, with the convective terms being treated with an explicit (third-order 
Adams-Bashforth) Galerkin-collocation scheme, and the diffusion terms being 
handled implicitly with standard variational projection operators. The only note- 
worthy subtlety associated with the passive scalar equation is that, as the boundary 
conditions (7) are derived from satisfaction of integral conservation laws, it is 
necessary that the discrete system also honour the appropriate integral relations. The 
proper conservative spectral element scheme is presented in detail in Ghaddar, 
Karniadakis & Patera (1986), and examples are given there of application of the 
method to unsteady grooved-channel flows. 

With the exception of a brief study of geometric dependence in $6, all results in 
this paper are for the ‘base’ geometry, L = 6.6666, 1 = 2.2222, a = 1.1111, with 
periodicity index m = 1. (It is shown in I that the m = 1 steady solutions are, in fact, 
stable with respect to subharmonic disturbances, m > 1. The effect of the m = 1 
assumption on our unsteady results will be discussed below.) In figure 3 (for figure 
3c see Plate 1) we plot steady streamlines, vertical velocity ‘slices’, and isotherms 
for R = 525, Pr = 1. It is seen that, with the exception of the groove region of the 
flow, the thermal solution is essentially one of conduction, or, more precisely, fully 
developed internal flow. In  the groove region of the domain the temperature 



Incompressible $ow in grooved channels. Part 2 55 1 

1 -1 

( b )  

FIQURE 3. Plots of the (a) streamlines, and (b )  vertical velocity slices of the steady flow in the base 
geometry at R = 525. It is seen that there is very little convective communication between the 
groove and channel parts of the flow. 

distribution is affected by the re-circulating flow (and associated boundary layers) ; 
however the effect of the groove vortex does not extend to the channel part of the 
flow, as evinced by the insignificant vertical velocities above the cavity. It is clear 
that any transport enhancement must take the form of increased communication 
between the groove and channel flows. 

To get an overall measure of the transport characteristics of these flows, we define 
a Nusselt number Nu as 

where 8, is a reference temperature taken to be the (periodic part of the) mixed-mean 
temperature at x = 0, 

and ( ) refers to the time average over a cycle of the flow, 1 < 1' < t + f 2 i 1 .  The 
Nusselt number (35)  serves as a useful measure of heat transfer (our results do not 
change significantly for other measures of transport), and, as it involves only wall 
and mixed-mean temperatures, is readily determined experimentally. The geometric 
factors in (35a)  have been chosen so as to scale the Nusselt number with average heat 
flux per unit length (in 2); however this detail is irrelevant as regards enhancement, 
and is only important if comparisons are to be made between different geometries. 

For the particular flow shown, the Nusselt number is Nu = 1.12, compared with 
Nu = 1.07 for (time-asymptotic) conduction, and Nu = 1.35 for the same flow in a 
grooveless channel. In other words, the effect of flow is to increase the heat transfer, 
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but i t  does not compensate for the increased 'conduction length' associated with the 
groove depth. In  figure 4 we plot the Nusselt number as a function of Reynolds 
number for steady flow (Pr = l), in which there is seen to be little effect of 
increased R.  In figure 5 we plot the Nusselt number as a function of Prandtl number 
a t  R = 525, where, again, there is seen to be only a slight functional dependence. 
These two figures confirm the fact that the steady groove flow is thermally very 
similar to a fully developed internal flow (in which Nu is a constant, and there is 
no boundary-layer structure), with only a slight perturbation due to the relatively 
weak vortex in the groove. 

5. Linear theory - numerical results 

In this section we verify the conclusions of $3, and show that forcing of the 
linearized equations at  Q, = Ql leads to resonance and associated transport en- 
hancement as R =- R,, that is, r1 * 0. The results are obtained by time-integration of 
the spectral element equivalent of (9)-( 11) to a steady-periodic state, on meshes such 
as those in figure 7 of I. To measure the effect of oscillation on flow excitation and 
associated transport, we introduce two parameters : the first a pointwise amplitude 
parameter, 

= ( (4x7 t )  - (w))2)4 (36) 

corresponding to the magnitude of the fluctuating component of the vertical velocity; 
the second a transport enhancement parameter, 

It should be noted that both A and E - 1 are identically zero for the case of plane 
Poiseuille flow (i.e. no groove present, a = 0), as discussed in detail in $3. 

In figure 6, we plot A at a point in the groove shear layer (z = 2.963, y = - 1 .O) 
as a function of Q, a t  R = 525 and R = 2 2 5 , ~  = 0.2 ( A ,  of course, scales linearly with 
7 by definition). A similar plot is given in figure 7 for a point in the channel near the 
critical layer (x = 0, y = -0.75). It is seen that the response is precisely as expected 
on the basis of simple linear resonance considerations. First, the frequency response 
is peaked at 52, calculated from linear theory (see I). Secondly, the width of the peak 
decreases and the magnitude increases as R * R,  (here R, = 975). Lastly, there is 
a secondary peak in the frequency response, due to excitation of a higher mode of 
the linear system Q,, k > 1. This second peak is plausibly assumed to be the second 
least-stable mode Q,, although this can not be proven on the basis of our initial- 
value-problem results. 

In the language of I, this second mode corresponds to an n = 1 (one-wave) solution. 
Although we defer detailed flow visualizations until the discussion in f~ 6 of nonlinear 
resonance, it is important in the context of linear theory to verify the wavenumber 
of the forced disturbances. To this end, we plot in figure 8 vertical velocity slices 
for the first and second modes (Sa, = 0.142 and 0.054 respectively) for the case of 
R = 5 2 5 , ~  = 0.2. It is clear from figure 8 that the primary peak is a two-wave solution 
(consistent with the unforced results in I), but that the secondary peak corresponds 
to a one-wave mode. An important consequence of this different spatial structure is 
that the relative amplitude of the response in the channel as compared with that in 
the groove (indicative of the eigenfunction shape) is much larger for the n = 1 solution 
than for the n = 2 case (see figures 6 and 7). This is, no doubt, due to the fact that 
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Plate 1 

FIGURE 3 (c). Plot of the steady isotherms in the 
base geometry at R = 525, Pr = 1. The colour 
spectrum is used to visualize the thermal field, 
with red corresponding to the highest tempera- 
tures in the flow, and blue and white corres- 
ponding to the lowest temperatures (the same 
interpretation applies in all subsequent colour 
isotherm plots). 

FIGURE 18. A plot of the isotherms (temperature 
hs) during one flow cycle in the base geometry 
at R = 525, q = 0.2, nF = 0.168 (= n, 1) and 
Pr = 1. Note the imprint of the Tollmien- 
Schlichting waves on the resulting temperature 
distributions. (a) nF t = 0; (6 )  0.2; (c) 0.4; 
( d )  0.6; (e) 0.8. 

(Facing p .  552)  
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FIGURE 21. (a) A plot of the isotherms (temperature fills) for steady flow at R = 525,Pr = 1 in the 
shorter geometry (L = 5.185). (b)  A plot of the isotherms during one flow cycle of the shorter geometry 
at R = 525, IJ = 0.2, OF = 0.0925 (= On, andPr = 1. Note the one-wa1.c structure of the solution 
compared to the two-wave solutions obtained in the base geometry (see figure 18). (i) OFt = 0; (ii) 0.2; 
(iii) 0.4; (iv) 0.6; (v) 0.8. 
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FIGURE 4. A plot of the Nusselt number as a function of Reynolds number at Pr = 1 for the steady 
flow in the base geometry. There is very little effect of increased R on Nueaelt number, indicating 
that the steady grooved-channel flow is thermally very similar to fully developed internal flow in 
homogeneous geometry. 
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FIQURE 5. A plot of Nusselt number as a function of Prandtl number for the steady flow in the 
base geometry. 
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FIGURE 6. A plot of the amplitude parameter A at a point in the groove shear layer (z = 2.963, 
y = - 1) as a function of the forcing frequency of the linearized system 0, at 7 = 0.2, for R = 525 
(A), and R = 225 (0). The curves are peaked at 0, calculated from linear theory. The secondary 
peak a t  Q, corresponds to excitation of the second least-stable linear mode. Note the decreased 
amplitudes at the lower (more subcritical) Reynolds number, and the slight dependence of 52, 
on R. 
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FIGURE 7. A plot of the amplitude parameter A at a point in the channel near the critical layer 
(z = 0, y = -0.75) as a function of the forcing frequency of the linearized system at = 0.2 for 
R = 525 (A), and R = 225 (0). Note that in the channel region of the flow the secondary peak 
is relatively more important. 
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(b) 

FIGURE 8. A plot of vertical velocity slices for the first and second modes of the linearized system 
at R = 525 and 7 = 0.2 for (a) 0, = 0.142 (=a,), and (b)  a, = 0.054 (=a,). It is clear that the 
primary peak is a two-wave solution, and the secondary peak is a one-wave structure. 

u = 2n/L is a less stable plane-Poiseuille-flow (channel) mode than u = 4n/L.  We 
return to this point in $6 in the context of geometric dependence. 

Although we were unable in I to verify our frequency theory for higher modes in 
our unforced direct simulations, the forced calculations presented here afford this 
opportunity. In particular, we note that the channel Tollmien-Schlichting theory for 
frequency proposed in I does extend to the second mode shown in figures 6 and 7, 
as 0, = 0.054 is in good agreement with SZ,,(a, R) = 0.055, with a = 2nn/L, n = 1. 
Despite this success for the (assumed) second mode of the system, it is clear that the 
frequency theory in I will not extend to arbitrarily high modes, as for sufficiently 
small lengthscales there will be decoupled modes for which the assumption of a shear 
layer/Tollmien-Schlichting compromise will no longer apply. 

At this point it is appropriate to comment on the effect of the single-groove (m = 1) 
assumption on our results. For the base geometry, i t  is shown in I that the steady 
flow is stable with respect to subharmonics ( m  > l) ,  and that the least-stable mode 
also persists even when a larger computational domain (i.e. m = 2)  is used. However, 
it is clear that for an ‘infinite’ number of grooves, there are an infinite number of 
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modes corresponding to multiple-groove periodicity that are not represented in our 
m = 1 calculations, and that these modes will contribute to  the forced solution. I n  
particular, it  is possible that at forcing frequencies corresponding to  the frequencies 
of multiple-groove modes, secondary peaks will occur in the flow response that are 
not present in the single-groove results (e.g. figures 6 and 7 ) .  However, a t  least near 
the primary resonance (a, = Q,), these effects should not be important given the 
relative stability of these higher modes compared with the critical mode ; computa- 
tional experiments for double-groove oscillatory forced flows confirm this conjecture. 

We now investigate the effect of the resonant flow response on the transport 
characteristics of the flow. We plot in figure 9 the enhancement E as a function of 
52, at R = 525 and 225 for 7 = 0.2 and Pr = 1. It is seen that the two peaks in A 
a t  0, and 0, translate directly into peaks in the heat-transfer response, as might be 
expected. The reason for the enhancement is readily demonstrated by reconsidering 
the vertical velocity slices in figure 8;  compared to  the steady-flow results in figure 3 ,  
the resonant flow is characterized by large vertical velocities at the groove lip (as 
large as 60 yo of the maximum unperturbed streamwise velocity), with associated 
communication and mixing between the ‘ hot ’ groove and the ‘cold’ channel. Figure 8 
also demonstrates the dramatic difference between the grooved and ungrooved 
(plane Poiseuille) geometry, as in the latter case there is no vertical velocity excitation 
in the context of linear theory. 

Lastly, we study the effect of flow amplitude on transport enhancement E by 
plotting in figure 10 E’ as a function of 7 a t  0, = 0, for R = 225, Pr = 1. For small 7, 
E - 1  - O(q2), due to the fact that the O(7)  contributions have zero time average. 
(It should be noted that to  consistently calculate E to  O(q2) we would have to carry 

, , , JOL, , 
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sz,1 FIQURE 10. A plot of the enhancement parameter E of the linear system as a function of 7 at R, = 
for R = 225, Pr = 1 .  For small 7, E -  1 - O(q2), while at large 7, E appears to behave as E - C ~ Z .  

The square-root dependence derives from the thermal boundary-layer structures that form as the 
flow excitation increases. 

out (8) to the next term in the expansion. Our interest in the enhancement in the 
context of linear theory, however, is simply to measure the transport due to excitation 
of linear modes, and we have, therefore, not included these terms. Quantitative 
prediction of the enhancement will be given in $6, on the basis of full nonlinear 
calculations.) For large values of 7, i t  appears from figure 10 that the enhancement 
behaves (very) approximately like E - c$, implying that as flow excitation increases, 
heat transfer is limited by spatial scales associated with thermal boundary layers. 
This will be discussed in greater detail in $6 in the context of Prandtl-number 
dependence. 

6. Nonlinear resonance calculations 
6.1. Overall transport behaviour 

In  this section we consider the full nonlinear response of grooved-channel flow to 
oscillatory perturbation, as described by (1)-(7). As before, the results are obtained 
by direct numerical simulation using the spectral element method, with all calculations 
continued until a steady-periodic solution (in u and 6)  is achieved. 

To begin, in figure 11 we plot A at the point in the groove shear layer as a function 
of 52, at R = 525 and 225,q = 0.2, analogous to figure 6 for linear theory. In figure 12 
we present the same results for a point in the channel near the critical layer of 
the travelling wave. We note several effects due to nonlinearity. First, the frequencies 
at which A achieves maxima SZ,,,, a,,, ('nonlinear' natural frequencies), are shifted 
from their linear counterparts a,, 52, respectively. The effect is most pronounced for 
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F I G U ~ ~ E  11. A plot of the amplitude parameter A at a point in the groove shear layer (z = 2.963, 
y = - 1) as a function of the forcing frequency QF of the nonlinear system a t  7 = 0.2 for R = 525 
(A),  and R = 225 (0). The optimal frequency for maximum enhancement, Q,,,, is slightly shifted 
from Q, predicted by linear theory. 
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FIGUHE 12. A plot of the amplitude parameter A at a point in the channel near the critical layer 
( x  = 0, y = -0.75) as a function of the forcing frequency of the nonlinear system at 7 = 0.2, for 
R = 525 (A), and R = 225 (0). Peaks or  inflexions appear a t  Q,,,, Q,,,, $2,,1 and 2Q,,1 in both 
this figure and figure 11. 
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8, and R = 525, as the amplitudes are larger for the first mode and the higher 
Reynolds number, and hence the nonlinear effects are more important. Secondly, the 
amplitudes of the peaks are reduced compared with the linear case, figures 6 and 7 ,  
corresponding to increasing nonlinear attenuation (saturation) as R * R,. Note again 
that the primary peak at  high Reynolds number is most seriously affected. Thirdly, 
we see the appearance of new peaks at ?j8,,, and 28,,,, corresponding to excitation 
of sub- and superharmonics. As in the linear case, the one-wave peaks are more 
pronounced in the channel part of the domain. 

does not appear to 
be precisely the same at all points in the flow domain; this is due to (spatially 
dependent) contamination of the resonant mode by the higher modes of the system. 
Although this effect is most pronounced for the nonlinear calculations reported here, 
even within the context of linear theory the peaks in the amplitude response need 
not be uniformly at  8, = SZ,, except in the limit that R => R,. As this frequency shift 
is quite small for the range of parameters studied, we continue to speak of a single 
‘optimal ’ frequency as regards both amplitude and enhancement. 

The main conclusion based on comparison of figures 11 and 12 with figures 6 
and 7 is that the resonance phenomenon presented here is essentially linear in nature, 
with nonlinearity having a significant quantitative, but not qualitative, effect. As 
expected, the nonlinear modifications become more important at larger flow ampli- 
tudes, whether these large amplitudes are due to increased forcing amplitude 7, or 
to operation at near-resonant conditions (Ghaddar 1985). As an example of the 
magnitude of these effects, in figure 13 we plot 8n,l vs. 7 for R = 225, where it is 
seen that a 30% shift in ‘optimal’ frequency occurs as r] varies between 0 and 1.0. 
Note that, as 7 * O ,  8n,l approaches the linear result Q,, as must be the case. 

Considering now the transport enhancement resulting from the full nonlinear 
calculation, we present in figure 14 E as a function of SZ, for R = 525 and 225 at 
7 = 0.2, Pr = 1, analogous to the linear results given in figure 9. We see basically all 

It can be seen from comparison of figures 11 and 12 that 
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FIGURE 14. A plot of the enhancement E as a function of R, of the nonlinear system a t  7 = 0.2, 
Pr = 1 for R = 525 (o), and R = 225 (0). The peaks in A (see figures 11 and 12) translate directly 
into peaks in the heat-transfer enhancement. 

the same nonlinear effects as in A ,  with frequency shifts, amplitude attenuation, and 
appearance of primary frequency multiples. Note that the peak enhancement at  
R = 525 is E = 1.83, a significant augmentation of heat transfer for an amplitude 
modulation as small as 7 = 0.2. Again comparing this with the case of a straight 
channel, in which there would be no enhancement at  this Reynolds number, we see 
the significant effect of the groove on flow response. 

6.2. Flow visualization 
In order to better see the physical mixing processes responsible for transport 
enhancement in oscillatory grooved-channel flows, we consider here visualizations of 
the instantaneous velocity and temperature fields during the flow cycle. In  figures 
15, 16, 17, and 18 we plot the instantaneous streamlines, vertical velocity slices, 
vorticity contours, and isotherms (temperature fills) respectively, during a full cycle 
for R = 525, Q, = Qn,l,  7 = 0.2, Pr = 1. First, all the pictures indicate significant 
mixing between the groove and bulk flow. This is seen in figure 15 by the bulging 
of the groove vortex into the channel, and in figure 16 by the large vertical velocities 
at  the groove lip. Even more dramatically, we see in figure 18 (plate 1) the motion 
of packets of ‘hot ’ fluid into the channel from the groove, and the motion of packets 
of ‘cold’ fluid from the channel into the groove. 

Secondly, it is clear that the solution is, indeed, an n = 2 (two-wave) channel mode, 
as would be expected from the linear theory results of I. This can be seen particularly 
well in the isotherm pictures in figure 18, in which the two-wave travelling-wave 
solution in the channel is clearly delineated; figure 18 is, in essence, a thermal 
visualization of Tollmien-Schlichting waves. Note that the form of the Tollmien- 
Schlichting wave, together with the fact that the temperature is approximately 
material in the interior of the domain, forces on the thermal solution the appearance 
of two alternate hot and cold spots per periodicity length, with the hot spots at  the 
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FIQURE 15. A plot of the instantaneous streamlines during the flow cycle at R = 525, 7 = 0.2, 
52, = 0.108 (=On,,) for the base geometry. The groove vortex is seen to bulge out into the channel 
flow during the course of the cycle. (a) Q,t = 0; (a) 0.2; (c) 0.4; (d) 0.6; (e) 0.8; (f) 1.0. 

wave ‘crests’, and the cold spots at the wave ‘troughs’. In  essence, as a wave trough 
passes over the groove, it forces cold fluid into the downstream side of the cavity, 
which in turn pushes hot fluid from the upstream part of the groove into the 
associated oncoming wave crest. It is clear from figure 18 that spatial ‘compatibility’ 
between the groove and channel flows (as enforced by the choice of n,  the number 
of channel waves per periodicity length) is critical to effective transport. 

Although the central focus of the current paper is on the effect of resonance on 
heat-transfer enhancement, i t  is clear that subcritical resonance will also have a 
significant effect on the transition process in grooved-channel flows. In I, it is shown 
that supercritical grooved-channel flows closely resemble the secondary flows (finite- 
amplitude Tollmien-Schlichting waves) seen in plane Poiseuille flow (Orszag & Patera 
1983) ; figures 15-18 demonstrate that this similarity extends to forced subcritical 
grooved-channel flows. This suggests that the three-dimensional secondary instability 
isolated in plane channels may play an important role in transition in grooved-channel 
flows not only at  supercritical Reynolds numbers, but also at subcritical Reynolds 
numbers. In particular, the extreme sensitivity of grooved-channel flows to external 
disturbances, as evidenced by subcritical resonance, could well lead to transition 
for Reynolds numbers less than R, ( ~ 9 7 5  for the base geometry) ; small external 
perturbations are amplified into relatively large-amplitude Tollmien-Schlichting 
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FIQURE 16. A plot of the instantaneous vertical velocity slices during the flow cycle at R = 525, 
7 = 0.2, QF = 0.168 (=Sa,,,) in the base geometry. Note the large vertical velocities at the groove 
lip, as well as the two-wave structure per periodicity length in the channel region. (a) Q,t = 0; 
( b )  0.2; (c) 0.4; (a’) 0.6; (e) 0.8; (f) 1.0. 

waves, which may then, in turn, become unstable to three-dimensional instabilities. 
The increased receptivity of grooved-channel flows is, no doubt, at least partially 
responsible for the relative instability of general rough-walled systems as compared 
to their planar counterparts. 

6.3. Prandtl -number dependence 
The dependence of the enhancement E on the flow amplitude 7 for the linear 
calculations in $5 suggests that for large convective motions the heat transfer is 
limited by thermal boundary layers at the grooved wall. In this section we verify this 
conjecture by considering the Prandtl-number dependence of the enhancement. 

It is clear from figure 5 in $4 that the dependence of the steady Nusselt number 
on Prandtl number is very weak, owing to the fact that steady grooved-channel flow 
is only slightly different from fully developed flow in a straight channel. To use this 
same dependence in predicting the effect of Prandtl number on resonant flows is not 
correct, however, as for large convective motions we expect boundary layers to form, 
in which the transport now does depend on the velocity and relative diffusivities. 

In particular, if we assume that for large enhancement the flow approaches a state 



Incompressible $ow in grooved channels. Part 2 563 

FIGURE 17. A plot of the vorticity contours during the flow cycle at R = 525,q = 0.2, 9, = 0.168 
(=a,,,) in the base geometry. Note the significant vorticity generation at the upstream groove 
edge. (a) 9,t = 0; ( b )  0.2; (c) 0.4; (d )  0.6; (e) 0.8; (f) 1.0. 

of outer convectively dominated regions matched to thin thermal boundary layers 
at  walls, this suggests the scaling 

Nu(R, 7 ,  QF, pr) = Nu'(R, 7,QF) P f ,  (38a) 

K J f ,  E - 0 3 ,  (38b)  

for Pr > 1 ,  the j-power motivated by the similarity solution for high-Prandtl-number 
flat-plate boundary-layer flow (Schlichting 1955). Here E' is the reference enhancement 
at  Pr = 1, E'(R, 7, a,) = E(R, 7, QF, Pr = 1). We demonstrate that (38) is, indeed, 
the case, by plotting K vs. E - 1 in figure 19, where it is seen thst K does appear to 
approach + as E 00. The data in figure 19 derive from a number of runs with 
different frequency, Reynolds number, and amplitude, with Prandtl numbers in the 
range 1 < Pr < 5.  (The calculations are, of course, increasingly difficult as the 
Prandtl number increases, due to the presence of very thin thermal boundary layers.) 
As regards enhancement, figure 19 also implies that E - P h  for large E ,  as the 
Nusselt number for the steady flow has virtually no Prandtl number dependence (see 
figure 5 ) .  
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FIQURE 19. A plot of Prandtl-number power dependence K as a function of E'- 1 .  Note K 

approaches j as E' * co, as expected from simple boundary-layer estimates. 

6.4. Geometric dependence 
In  I, we presented a general theory for prediction of the natural frequency of 
(open-cavity) grooved-channel flows based on the dispersion relation for Tollmien- 
Schlichting channel waves, and demonstrated the accuracy of the theory over a wide 
range of geometric parameters. This theory, in conjunction with the resonance results 
presented in the current paper, allows for apriori prediction of the optimal frequency 
for transport enhancement for any given geometric configuration. 

As an example of the general validity of this approach, as well as a demonstration 
of the complex interaction between flow amplitude, geometry, and optimal en- 
hancement, we consider here a new geometry for which the primary frequency 8, 
corresponds to a one-wave (n = 1)  solution. The particular geometry chosen has 
parameters L = 5.185, 1 = 2.2222, a = 1.1111,  representing a slightly shorter con- 
figuration than the base case, for which L = 6.6666. I n  figure 20 we plot E as a 
function of 0, at R = 525, 7 = 0.2, Pr = 1 for this shorter domain. It is seen that, as 
expected, peak enhancement occurs a t  a frequency only slightly (nonlinearly) shifted 
from the linear result of 8, = 0.083. In  figure 21 (plate 2) we show the isotherms 
(temperature fills) during one cycle for the shorter geometry, demonstrating the 
one-wave nature of the flow and temperature distribution. 

We make two points by way of comparison of figures 20 and 21 with the 
corresponding curves for the base geometry (figures 14 and 18 respectively). First, 
the shorter geometry is, in fact, less stable than the base geometry (see I), from which 
i t  follows that the resonant flow excitation (e.g. A )  will be greater; this can be seen 
by the significant wave distortion in figure 21 compared to that in figure 18. However, 
as has been shown in the context of both linear and nonlinear theory, one-wave 
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FIGURE 20. A plot of the enhancement E m a function of SZ,, for the shorter-periodicity-length 
geometry, at R = 525, q = 0.2, and Pr = 1. The peak in the enhancement occurs a t  On,,, slightly 
shifted from a, of the linear system. A strong secondary peak also occurs at SZ, = 2SZn,, (xSZ,). 

solutions for these geometries are more ‘ channel ’ dominated than their two-wave 
counterparts, and as a result the increase in flow amplitude in the groove (com- 
pared to the base geometry at optimal conditions) is minimal. This is, no doubt, 
the primary reason why this less stable (shorter) geometry results in only a negligible 
increase in peak enhancement over the base case, as the critical ‘hot’ points in the 
flow (e.g. the groove) are not favoured by the eigenfunction shape of the one-wave 
excited mode. Another possible cause for the somewhat disappointing enhancement 
is that the one-wave solution in the channel is less convoluted than the corresponding 
two-wave mode, resulting in increased cross-stream thermal resistance and hence 
lower Nusselt numbers. In summary, resonant transport enhancement is not only a 
question of flow magnitude, but also proper velocity-temperature correlation. 

The second point concerns the secondary peak in figure 20, which is seen to be 
significantly larger than any secondary peaks that appeared in the base geometry. 
We conjecture that this is due to the coincidence that for this particular 
geometry, Reynolds number, and amplitude, 2Q,,, (=0.185) is the same as SZ, 
( zQTs(a = 4x/L, R )  = 0.184) to within 0.4 % (for the base geometry $2,,, differs 
from Q, by approximately 30 %). Consequently, there is a ‘secondary’ resonance 
between the nonlinear and linear modes, which results in significant flow excitation 
and transport enhancement. To verify the validity of this claim would require a more 
complete analysis of the nonlinear and linear response of this shorter geometry. Note 
that another instance in which we expect to see a ‘broad’ (bi-modal) frequency 
response is for geometries at  or close to the transition point at which the relative 
stability of the one- and two-wave solutions changes. 

These results for the shorter geometry highlight some of the difficulties associated 
with practical implementation of subcritical resonance. In addition to the impediments 
associated with the narrow peaks and nonlinear sensitivity of the frequency response, 
figure 20 demonstrates the large effect geometry can have on optimal conditions, with 



566 N .  K .  Ghaddar, M .  Magen, B .  B. Mikic and A .  T .  Patera 

jump changes in frequency occurring for only slight changes in domain shape (see 
figure 18 of I). It follows that enhancement by resonance in practical applications is 
potentially ‘ill posed ’, success relying heavily on detailed information on the para- 
meters and operating conditions of the system. Furthermore, application of resonant 
enhancement to practical devices must consider the penalties as well as benefits 
associated with large flow excitation, such asincreased dissipation and pressure drop, 
and make appropriate comparisons with competing augmentation schemes (e.g. 
turbulence). Although preliminary results indicate a lesser proportional increase in 
dissipation than heat transport at optimal conditions (Ghaddar 1985), the viability 
of modulatory perturbation will certainly be context-dependent. 

The same phenomena that make application of subcritical resonance a delicate 
matter, also make experimental confirmation a non-trivial task. A series of companion 
experiments is currently underway (Greiner et al. 1986), the first results of which are 
in good agreement with the theoretical and numerical results presented here for the 
resonance phenomenon, the Orr-Sommerfeld frequency theory, the spatial structure 
of the flow, and the significant transport enhancement associated with resonant flow 
excitation. Furthermore, experiments at  high Reynolds numbers (Greiner 1986) 
indicate that resonant excitation may, indeed, extend to turbulent flows, consistent 
with earlier work (Townes & Sabersky 1966) that implicated periodic groove bursts 
aa being critical in rough-wall turbulent transport. 

The most serious assumption of the numerical investigation reported here is that 
of two-dimensionality. Future work will address the degree to which the resonance 
phenomenon discussed here is modified by, and extends to, three-dimensional flow, 
using both three-dimensional (spanwise) Fourier analysis of two-dimensional grooves 
(Ghaddar & Patera 1986), and full three-dimensional spectral element simulation of 
grooves and protuberances with spanwise geometric variation (Karniadakis, Bullister 
& Patera 1986). Although the details of the frequency selection process will certainly 
be modified for these more-complicated situations, there is little doubt that the 
phenomenon of subcritical resonance is not restricted to the particular geometries 
presented here, and should obtain in a wide class of flows in non-homogeneous 
domains. 
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